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The problem of cosmological constant has been known as one of the biggest discrepancies between 

the world we observe and what quantum field theories of particles predict. It is, therefore, reasonable to 
ask if string theory can provide a hit to a resolution of thin problem. In the calculations based on local 
field theories, even getting e finite answer requirea some effort and one often invokes superaymmetry. 

The string providea a bono-fide cut& to ultraviolet divergences and a manifestly finite answer at least 
to one-loop calculations. In thin talk, we would like to review a simple model studies in ret [l] with a 
small cosmological constant [z]. Th e model itself in by now pretty much standard or elementary due to 
the quick progress in this field. (A partial lit inclndeo IS]-[U]. F or a more extensive reference, see 8 

recent review by J. H. Schwas 1151). W e would like to present it M an illustrative example that tachyon- 

free nonsupersymmetric string models can have an exponentially small cosmological constant when the 
number of massleas fermions and bosons are equal. 

The Erst point to observe in the following. In the aimplest model with internal compactiEed coordi- 

natea, namely 26 dimensional bosonic string compactiEed on a torus, the one-loop cosmological constant 
is dual with respect to the radius r of the compactified coordinatellal. 

V(r) = V(a’/r) (1) 

Here, I ignored the divergence due to the presence of a tachyon. Eq.(l) unmediately tella that the Frenkel- 

Kac point r = @, where one sees symmetries enhanced, in also energetically favored, leading to the 

cosmological constant which in 0((2ra’)-as/‘). A way to construct models with a small cosmological 

constant is to Ernst eliminate this duality through %visting’. 

A simplest model one would imagine having such property in obtained from the O(M) x O(l0) model 
[‘%‘I with extra twist in the compactiEed coordinate. Let’s lirst study the nine dimensional c-e. The 

requirement of modular invariance forces the compactiEed momenta to lie on an even self dual Lonntzian 
lattice (II in R’s’@l. At the Renkel-Kac point, 

P=(PRnPL)= 
( 

-- yy; 
> 

, ~m,l,rZ ,&=1/Z 

The momexita at an a&~ radius in obtained by boosting the lattice with rapidity y = log a with 
a=$. 

Remember that the O(M) x O(l6) model itself in obtained by the &twist I*] 

R = (-1)F~.‘~c~p(2~j~,)czp(2*jj~a) (J) 

Here, F..s. is the spacetime fermion number and jl, and jil are generators of O(M) x O(l6’). In our 
example, the twist is aimply 

R’ = Jpr’P.6 (4) 

a Operated by Unlvcrailies Research Associalion Inc. under contract with the United States Department of Energy 



Here, 6 is a shii vector in the compact&d coordinate and half the lattice vector in 0’. It turns out that 

there are only two inequivllent shift vectors: 

6’ = (CT& 6f) = ( &,$) ,Jr3=@ ,63=(-&,&) (5) 

We call theee twist I and twist Il. The physical effect these shift vectora bring in rather obvious: twist I 

(II) ahiita the spacetime fermion number by winding number l(momentum m), 

(-QF ,A, ~ (-)P ,.,, +I,(+ .A, +m . 
(6) 

So far, we are at r = a, and twist I and twist Il an identical due to the symmetry between momenta 
end winding numbers unique to this point. This is no longer true ra coon o we go away from the point. 

The shift vectors 6’ and 6” are resealed by (1 and a-l respectively. For thin reason, there in no relation 

like eq. (1) in twist I or twint II. Rather, they are dual to each other; in the small radius limit, twist I 
behaves exactly like the large radius limit of twist Il end vice versa From now on, we concentrate on 

twist I and analyse the model further. The partition function P turns out to be expressed M 

P = (to - oo)Pun +sqT + e/as. (7) 

Here, Pun(~) means the untwisted (twisted) part of the partition function of the 0(16)x0(16) model. The 
S is obtained by interchanging the right moving spacetime bosom and fermions in T. The l o,l,a, oo,1,l 
are standard factora seen, for instance in ref.[lT]; ( ) f z o re era t o even (odd) winding numbers and the 
subscript 0(1/Z) to integral (half-integral) momenta. The numerical plot is seen in the figure. 

In the large radius limit, only the I = 0 states survive and the twiet introduced becomes irrelevant. 
The model approaches the original O(l6) x 0(16) model: afiP + P,, + 7. In the small radius limit, 
the opposite thing happens: only those states carrying m = 0 survive, but all states carrying non-sero I 

become nearly degenerate with the 1= 0 maeslew atatee. It in a phenomenon unique to the string theory. 

The low lying spectrum ia schematically 

1=+1 P., w3,l~~:~s:, ~1,128~1 X (8”,(1,120)+(~20,1)),(6”,8”) 
(8) 

I= 0 (Sv, (1,120) + (IX’, l)), (WV) (80, (128, l)), K (1,128)) 

We interpret that the states having winding number 1 and I+ 1 form bmken ES x Es heterotic super- 

multiplet with nxes splitting M: = l/a’o’. We now ate 

zk!s 
a 

p ~~-4~a-(Pn-‘)“o*/4”p~, (9) 

Luckiiy, the asymptotic behavior of the oncloop comml~gicel constant can be evaluated analytically with 
’ exponential accurtiy; 

24 5(10,1/Z) 1 
Am ‘zw(nl - no) (2nl)6 (2ra,)a ;;ir + O(eeo), =F - =B = 64 (10) 

The salient feature of the formula which is not completely obvioub is that the leading power suppression 
factor ie entirely due to the massless degrees of freedom of the untwisted sector in 10 dimensions. (We, 
of course, eurn over all the winding number excitations in 9 dimensions). Therefore, once the number 

of bomnic and fermionic maesless degrees of freedom in matched, we are left with a model with an 
exponentially small cosmological constant. ln fact, if is not difficult to construct such a model in four 



dimensiona by tuning radii of compwt diisn~ions. Let rp, r*, rr, and ra be equal to @ and rs be 
away f’rom @. We then get eight additional masalcsl 8” bcaonn cormpondiig to the nonrero root8 of 
@‘V(Z))‘, cancelling the 5rc.t term in eq. (9). The resultant cosmological con&ant is 

AL,, = O(ezp(-l/A4.&)/aO) (11) 

This appears to be the iimt example of an exponentially small oncloop cosmological constant. The scale 

of supersymmetry breakiig need not be too small compared with the string tension: M, = lo’& GeV/c’ 
makes A to be well below the observed bound. It remains to be c.een to which extent this mechanism 
holds in chiial four diensional string models. 
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Fig. I. Cosmological constant *,o [in units ofO.01 (Zna’)-‘1 for 
the twist I and twist II models. plotled as a function tithe radius 
roflhe compxt dimension [in units of fi]. 


